Formulation and Evaluation of ZnO-loaded levofloxacin nanoparticles to fight Salmonella typhi
Keywords:
Levofloxacin, Toxicity, Antimicrobial, Salmonella typhiAbstract
Nanomaterials containing inorganic metallic ions are commonly employed to treat various illnesses, including cancer, autoimmune disorders, and bacterial and fungal colonization. In this study, Zn-loaded levofloxacin nanoparticles (ZLFNs) are used as an antibacterial agent. The adsorption-produced nanocarriers were examined using FTIR, SEM, TEM, and HPLC. Simulated body fluid was used in in vitro release experiments at 37 °C. Data were evaluated using a variety of kinetic models, which revealed a slow dissolution for 12 to 24 hours. Research on antimicrobial agents revealed enhanced efficaciousness against Salmonella typhi. It was experimentally found that ZLFNs possessed a particle size of 140.1 nm with a zeta potential value of -19.8 mV and had a good encapsulation efficiency of 87-91%.
References
Du, L. M., Hu, S. J., Chen, X. M., Deng, Y. Y., Yong, H. L., Shi, R. C., ... & Gao, H. J. (2023). Survey of Helicobacter pylori levofloxacin and clarithromycin resistance rates and drug resistance genes in Ningxia, 2020-2022. Zhonghua yi xue za zhi, 103(28), 2163-2167.
Garrison, M. W. (2003). Comparative antimicrobial activity of levofloxacin and ciprofloxacin against Streptococcus pneumoniae. Journal of Antimicrobial Chemotherapy, 52(3), 503-506.
Cuevas, O., Oteo, J., Lazaro, E., Aracil, B., De Abajo, F., Garcia-Cobos, S., ... & Gallardo, V. (2011). Significant ecological impact on the progression of fluoroquinolone resistance in Escherichia coli with increased community use of moxifloxacin, levofloxacin and amoxicillin/clavulanic acid. Journal of antimicrobial chemotherapy, 66(3), 664-669.
Kong, Y., Geng, Z., Jiang, G., Jia, J., Wang, F., Jiang, X., ... & Yu, X. (2023). Comparison of the in vitro antibacterial activity of ofloxacin, levofloxacin, moxifloxacin, sitafloxacin, finafloxacin, and delafloxacin against Mycobacterium tuberculosis strains isolated in China. Heliyon, 9(11).
Shen, X., Mu, D., Chen, S., Wu, B., & Wu, F. (2013). Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS applied materials & interfaces, 5(8), 3118-3125.
Münchow, E. A., Albuquerque, M. T. P., Zero, B., Kamocki, K., Piva, E., Gregory, R. L., & Bottino, M. C. (2015). Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dental materials, 31(9), 1038-1051.
Pan, S., Huang, T., Vazan, A., Liang, Z., Liu, C., Wang, J., ... & Sun, J. (2023). Magnesium oxide-water compounds at megabar pressure and implications on planetary interiors. Nature Communications, 14(1), 1165.
Liu, R., Luo, C., Pang, Z., Zhang, J., Ruan, S., Wu, M., ... & Gao, H. (2023). Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese chemical letters, 34(2), 107518.
Ameen, F., Al-Homaidan, A. A., Al-Sabri, A., Almansob, A., & AlNAdhari, S. (2023). Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans. Applied Nanoscience, 13(1), 623-631.
Yao, B., Shi, H., Bi, H., & Zhang, L. (2000). Optical properties of ZnO loaded in mesoporous silica. Journal of Physics: Condensed Matter, 12(28), 6265.
Abinaya, S., & Kavitha, H. P. (2023). Magnesium oxide nanoparticles: effective antilarvicidal and antibacterial agents. ACS omega, 8(6), 5225.
Sethi, N., Bhardwaj, P., Kumar, S., & Dilbaghi, N. (2019). Development and Evaluation of Ursolic Acid Co-Delivered Tamoxifen Loaded Dammar Gum Nanoparticles to Combat Cancer. Advanced Science, Engineering and Medicine, 11(11), 1115-1124.
Bhat, Z. U. H., Hanif, S., Rafi, Z., Alam, M. J., Ahmad, M., & Shakir, M. (2023). New mixed-ligand Zn (II)-based MOF as a nanocarrier platform for improved antibacterial activity of clinically approved drug levofloxacin. New Journal of Chemistry, 47(15), 7416-7424.
Sethi, N., Bhardwaj, P., Kumar, S., & Dilbaghi, N. (2019). Development And Evaluation Of Ursolic Acid Loaded Eudragit-E Nanocarrier For Cancer Therapy. International Journal of Pharmaceutical Research (09752366), 11(2).
Agha, O. A., Girgis, G. N., El-Sokkary, M. M., & Soliman, O. A. E. A. (2023). Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. International Journal of Pharmaceutics: X, 6, 100201.
Yusof, N. Y., Norazzman, N. I. I., Zaidi, N. F. M., Azlan, M. M., Ghazali, B., Najib, M. A., ... & Aziah, I. (2022). Prevalence of Antimicrobial Resistance Genes in Salmonella Typhi: A Systematic Review and Meta-Analysis. Tropical Medicine and Infectious Disease, 7(10), 271.
Rani, P., & Sethi, N. (2024). To Combat Cancer Cell Lines, the Development, and Evaluation of Lycopene-Co-Loaded Tamoxifen Nanoparticles. Naturalista Campano, 28(1), 1158-1166.
Tahir, M. Y., Sillanpaa, M., Almutairi, T. M., Mohammed, A. A., & Ali, S. (2023). Excellent photocatalytic and antibacterial activities of bio-activated carbon decorated magnesium oxide nanoparticles. Chemosphere, 312, 137327.
Song, Y., Zheng, C., Li, S., Chen, J., & Jiang, M. (2023). Chitosan-magnesium oxide nanoparticles improve salinity tolerance in rice (Oryza sativa L.). ACS Applied Materials & Interfaces, 15(17), 20649-20660.
Saini, A., Budania, L. S., Berwal, A., & Sethi, S. K. N. (2023). Screening of the Anticancer Potential of Lycopene-Loaded Nanoliposomes. Tuijin Jishu/Journal of Propulsion Technology, 44(4), 1372-1383.
Saya, L., Malik, V., Gautam, D., Gambhir, G., Singh, W. R., & Hooda, S. (2022). A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. Science of The Total Environment, 813, 152529.
Poonam, D., Sethi, N., Pal, M., Kaura, S., & Parle, M. (2014). Optimization of shoot multiplication media for micro propagation of Withania somnifera: an endangered medicinal plant. Journal of Pharmaceutical and Scientific Innovation (JPSI), 3(4), 340-343.
Suman, J., Neeraj, S., Rahul, J., & Sushila, K. (2014). Microbial synthesis of silver nanoparticles by Actinotalea sp. MTCC 10637. American Journal of Phytomedicine and Clinical Therapeutics, 2, 1016-23.
Azab, E. T., Thabit, A. K., McKee, S., & Al-Qiraiqiri, A. (2022). Levofloxacin versus clarithromycin for Helicobacter pylori eradication: are 14 day regimens better than 10 day regimens? Gut Pathogens, 14(1), 24.
Sethi, N., Kaura, S., Dilbaghi, N., Parle, M., & Pal, M. (2014). Garlic: A pungent wonder from nature. International research journal of pharmacy, 5(7), 523-529.
Ochieng, C., Chen, J. C., Osita, M. P., Katz, L. S., Griswold, T., Omballa, V., ... & Carleton, H. A. (2022). Molecular characterization of circulating Salmonella Typhi strains in an urban informal settlement in Kenya. PLOS Neglected Tropical Diseases, 16(8), e0010704.
Jahan, F., Chinni, S. V., Samuggam, S., Reddy, L. V., Solayappan, M., & Su Yin, L. (2022). The complex mechanism of the Salmonella typhi biofilm formation that facilitates pathogenicity: a review. International Journal of Molecular Sciences, 23(12), 6462.
Abukhadra, M. R., Gameel Basyouny, M., Khim, J. S., Allam, A. A., Ajarem, J. S., & Maodaa, S. N. (2022). Green functionalization of clinoptilolite with MgO nano-platelets as adsorbent for different species of antibiotic residuals (levofloxacin, ciprofloxacin, and pefloxacin); equilibrium studies. Separation Science and Technology, 57(11), 1688-1701.
Chang, L., Xue, X., Deng, Q., Xie, X., Zhang, X., Cheng, C., ... & Huang, Y. (2023). Modulating the electronic structure of Co center via MgO@ C co-doping for PMS activation to remove levofloxacin. Separation and Purification Technology, 321, 124151.
Kaura, S., Parle, M., Insa, R., Yadav, B. S., & Sethi, N. (2022). Neuroprotective effect of goat milk. Small Ruminant Research, 214, 106748.
da Silva, K. E., Tanmoy, A. M., Pragasam, A. K., Iqbal, J., Sajib, M. S. I., Mutreja, A., ... & Andrews, J. R. (2022). The international and intercontinental spread and expansion of antimicrobial-resistant Salmonella Typhi: a genomic epidemiology study. The Lancet Microbe, 3(8), e567-e577.
Rao, D. S., Muraleedharan, K., & Humphreys, C. J. (2010). TEM specimen preparation techniques. Microscopy: science, technology, applications and education, 2, 1232.
Mohammed, A., & Abdullah, A. (2018, November). Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania (Vol. 2018, pp. 7-9).
Xue, X., Liao, W., Liu, D., Zhang, X., & Huang, Y. (2023). MgO/Co3O4 composite activated peroxymonosulfate for levofloxacin degradation: Role of surface hydroxyl and oxygen vacancies. Separation and Purification Technology, 306, 122560.
Jett, B. D., Hatter, K. L., Huycke, M. M., & Gilmore, M. S. (1997). Simplified agar plate method for quantifying viable bacteria. Biotechniques, 23(4), 648-650.
Movasaghi, Z., Rehman, S., & ur Rehman, D. I. (2008). Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134-179.
D'Souza, S. S., & DeLuca, P. P. (2006). Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharmaceutical research, 23, 460-474.
Berthomieu, C., & Hienerwadel, R. (2009). Fourier transform infrared (FTIR) spectroscopy. Photosynthesis research, 101, 157-170.
Blanthorne, C., Jones-Farmer, L. A., & Almer, E. D. (2006). Why you should consider SEM: A guide to getting started. In Advances in accounting behavioral research (Vol. 9, pp. 179-207). Emerald Group Publishing Limited.
Kranz, H., Yilmaz, E., Brazeau, G. A., & Bodmeier, R. (2008). In vitro and in vivo drug release from a novel in situ forming drug delivery system. Pharmaceutical research, 25, 1347-1354.
Xu, W., Ding, G., Yokawa, K., Baluška, F., Li, Q. F., Liu, Y., ... & Zhang, J. (2013). An improved agar-plate method for studying root growth and response of Arabidopsis thaliana. Scientific reports, 3(1), 1273.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Applied Optics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The CC Attribution-NonCommercial 4.0 License allows sharing and adapting the work, provided the creator is credited and the work is not used commercially. Modifications must be indicated, and derivative works under the same license are allowed.