Research progress on terahertz communication technology
Keywords:
Deep space exploration, Modulation and demodulation, Terahertz communication, Terahertz receiver, Terahertz transmitterAbstract
Terahertz(THz) band locates between the infrared and microwave and has great application prospects in the fields of national defense such as space communications, short-range tactical communications, and so on. The characteristics, categories, solutions and the key technologies involved in terahertz communication system are summarized. Research status and achievements of terahertz communication system at home and abroad in recent years are introduced, and the communication distance reaches 20 km at 0.14 THz band, the communication transmission rate reaches 105 Gb/s at 0.3 THz band. Several communication technical routes are analyzed, that conclude all electronics method, optoelectronics method and quantum cascade laser communication method, and their advantages and disadvantages are compared. Additional, the development trend and application prospect of terahertz communication technology are viewed. © 2018, Editorial Board, Journal of Applied Optics. All right reserved.
References
Lee Y.S., Principles of Terahertz Science and Technology, (2010)
Lewis R.A., Terahertz Physics, (2013)
Li X., Xu H., Yu X., Et al., Progress of terahertz communication technology and space application outlook, Space Electronic Technology, 4, 4, pp. 56-60, (2013)
Zhao G., Application of terahertz technology in military and security field, Journal of Electronic Measurement and Instrumentation, 29, 8, pp. 1097-1101, (2015)
Akihiko H., Kosugi T., Hiroyuki T., Et al., 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s date transmission, IEEE Transactions on Microwave Theory and Technology, 54, 5, pp. 1937-1944, (2006)
Kosugi, Tokumitsu M., Enoki T., Et al., 120-GHz Tx/Rx chipset for 10-Gbit/s wireless application using 0.1-μm-gate InP HEMTs, (2004)
Ryoichi Y., Akihiko H., Toshihiko K., Et al., 10-Gbit/s MMIC wireless link exceeding 800 meters, (2008)
Naoya K., Yuichi K., Overview of millimeter and terahertz wave application research, NTT Technical Review, 7, 3, pp. 1-6, (2009)
Chattopadhyay G., Technology, capabilities, and performance of low power terahertz sources, IEEE Transactions on Terahertz Science and Technology, 1, 1, pp. 33-53, (2011)
Song L., Feasibility and requirement analysis of terahertz space communication, Journal of Dalian University, 36, 3, pp. 17-21, (2015)
Veksler D., Aniel F., Rumyantsev S., Et al., GaN heterodimensional Schottky diode for THz detection, (2006)
Deal W., Mei X.B., Leong K.M.K.H., Et al., THz monolithic integrated circuits using InP high electron mobility transistors, IEEE Transactions on Terahertz Science and Technology, 1, 1, pp. 25-32, (2011)
Wang Y., Dong Z., Atmospheric attenuation characteristics of terahertz pulse propagation, Journal of Terahertz Science and Electronic Information Technology, 13, 2, pp. 208-214, (2015)
Zhang J., Deng X., Wang C., Et al., Terahertz high speed wireless communications: systems, techniques and demonstrations, Journal of Terahertz Science and Electronic Information Technology, 12, 1, pp. 1-13, (2014)
Yang W., Liu W., The research progresses of terahertz communications, Journal of Beijing Union University, 29, 4, pp. 19-28, (2015)
He J., Research on modulation techniques of terahertz communication, Journal of Capital Normal University: Natural Science Edition, 35, 2, pp. 15-21, (2014)
Sun Y., Zhan Y., Discussion of modulation mode for ultra high-speed terahertz communication system, Modern Electronics Technique, 38, 9, pp. 1-8, (2015)
Kleine-Ostmann T., Dawson P., Pierz K., Et al., Room-temperature operation of an electrically driven terahertz modulator, Appl. Phys. Lett., 84, 5, pp. 3555-3557, (2004)
Jornet J.M., Pujol J.C., Pareta J.S., PHLAME: A physical layer a ware MAC protocol for electromagnetic nanonetworks in the terahertz band, Nano Communication Networks, 3, 1, pp. 74-81, (2012)
Hirata A., Kosugi T., Takahashi H., Et al., 120 GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission, IEEE Trans. on Microwave Theory and Techniques, 54, 5, pp. 1937-1944, (2006)
Song H.J., Ajito K., Muramoto Y., Et al., 24 Gbit/s data transmission in 300 GHz band for future terahertz communications, Electronics Letters, 48, 15, pp. 953-954, (2012)
Moeller L., Federici J., Su K., 2.5 Gbit/s duobinary signaling with narrow bandwidth 0.625 terahertz source, Electronics Letters, 47, 15, pp. 856-858, (2011)
Akihiko H., Toshihiko K., Hiroyuki T., Et al., 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission, IEEE Transaction on Microwave Theory and Technology, 54, 5, pp. 1937-1944, (2006)
Kosugi T., Tokumitsu M., Enoki T., Et al., 120 GHz Tx/Rx chipser for 10-Gb/s wireless application using 0.1-um-gate InP HEMTs, (2006)
Ryoichi Y., Akihiko H., Toshihiko K., Et al., 10-Gb/s MMIC wireless link exceeding 800 meters, radio and wireless symposium, 6, 8, pp. 695-698, (2008)
Akihiko H., Toshihiko K., Nicholas M., Et al., High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gb/s wireless link, Transcation on Microwave Theory and Technology, 52, 8, pp. 1843-1850, (2004)
Nakajima F., Furuta T., Ito H., High power terahertz wave generation using a resonant antenna integrated uni-travelling-carrier photodiode, Nippon Telegraph and Telephone Corporation, 40, 20, pp. 1297-1298, (2006)
Laskin E., Chevalie P., Chantre A., Et al., 165-GHz transceiver in SiGe technology, IEEE Journal of Solid-State Circuits, 43, 5, pp. 1087-1100, (2008)
Laskin E., Tang K.W., Yau K.H.K., Et al., 170-GHz transceiver with on-chip antennas in SiGe technology, (2008)
Ostmann T.K., Pierz K., Hein G., Et al., Audio signal transmission over THz communication channel using semiconductor modulator, Electronics Letters, 40, 2, pp. 124-126, (2004)
Mark J., Stephen S., A global optimizationmethod for robust affine registration of brain images, Medical Image Analysis, 5, 2, pp. 143-156, (2001)
Jastrow C., Munter K., Piesiewicz R., Et al., 300 GHz transmission system, Electronics Letters, 44, 3, pp. 213-215, (2008)
Ibraheem A., Norman K., Daniel M., Et al., Low-dispersive dielectric reflectors for future wireless Terahertz communication system, 12, 9, pp. 930-931, (2008)
Kallfass I., Antes J., Schneider T., Et al., All active MMIC-based wireless communication at 220 GHz, IEEE Trans. on Terahertz Science and Technology, 1, 2, pp. 477-487, (2011)
Koeing S., Lopez-Diaz D., Antes J., Et al., Wireless sub-THz communication system with high data rate, Nature Photonics, 7, 12, pp. 977-981, (2013)
Piesiewica R., Jansen C., Mittleman D., Et al., Scattering analysis for the modeling of THz communication systems, IEEE Trans on Antennas and Propagation, 55, 11, pp. 3002-3009, (2007)
Thomas K., Radoslaw P., Martin K., Et al., Propagation models, measurements and simulations for wireless communication systems beyond 100 GHz, (2007)
Radoslaw P., Martin J., Joerg S., Et al., Influence of hardware parameters on the performance of future indoor THz communication systems under realistic propagation conditions, Microwave Conference, 9, 12, pp. 1606-1609, (2007)
Jastrow C., Munter K., Piesiewicz R., 300 GHz transmission system, Electronics Letters, 44, 3, pp. 213-214, (2008)
Wang C., Lin C., Deng X., Et al., 140 GHz data rate wireless communication technology research, Journal of Terahertz Science and Electronic Information Technology, 9, 3, pp. 263-267, (2011)
Wang C., Lu B., Miao L., Et al., 0.34 THz T/R front-end for wireless communication, High Power Laser and Particle Beams, 25, 6, pp. 1530-1534, (2013)
Tan Z., Chen Z., Han Y., Experimental realization of wireless transmission based on terahertz quantumcascade laser, Acta Physica Sinica, 61, 9, (2012)
Wang C., Lin C., Chen Q., Et al., A 10 Gbit/s wireless communication link using 16QAM modulation in 140 GHz band, IEEE Transactions on Microwave Theory and Techniques, 61, 7, pp. 2737-2746, (2013)
Wang C., Lu B., Lin C., Et al., 0.34 THz wireless link based on high order modulation for future wireless local area network, IEEE Transactions on Terahertz Science and Technology, 4, 1, pp. 75-85, (2014)
Lin C., Lu B., Wang C., Et al., 0.34 THz wireless local area network demonstration system based on 802.11 protocol, Journal of Terahertz Science and Electronic Information Technology, 11, 1, pp. 12-15, (2013)
Wang C., Liu J., 0.14 THz 10 Gb/s wireless communication system, Mation and Electronic Engineering, 9, 3, pp. 265-269, (2011)
Chen Z., Tan Z., Wang C., Et al., Digital communication link based on THz QCL and THz QWP, Infrared and Laser Engineering, 42, 10, pp. 2796-2799, (2013)
Gu L., Tan Z., Terahertz communication technology, Physics, 42, 10, pp. 695-707, (2013)
Liu H., Research and design of terahertz wirelesscommunication system, (2014)
Cao L., Guan X., Design and construction of 220 GHz short-range wireless communication system, Vacuum Electronics, 6, pp. 96-98, (2013)
Yu D., Yang H., Li H., Analysis and processing of noise in weak terahertz signal detection system, Journal of Applied Optics, 33, 6, pp. 1101-1104, (2012)
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Applied Optics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The CC Attribution-NonCommercial 4.0 License allows sharing and adapting the work, provided the creator is credited and the work is not used commercially. Modifications must be indicated, and derivative works under the same license are allowed.